Many of the STEM (science, technology, engineering and mathematics) PhD students that we’ve interviewed on our site have also been active STEM ambassadors. This means that they engage with school children to help them learn more about scientific research and become enthused with STEM subjects. This can be in the form of giving talks at schools, producing online videos and also becoming involved as mentors in science investigatory projects. This page gives you more detail about the latter.
What is a Science Investigatory Project?
A science investigatory project (SIP) refers to a science-based research project or study that is performed by school children. An SIP is usually a science experiment performed in a classroom setting with the class separated into small groups, but can also form part of a scientific exhibition or fair project.
The main aim of a science investigatory project is for it to provide school aged children with an engaging way to learn more about science and the concept of performing scientific research. The approaches used are often broadly aligned with those used by PhD students carrying out a research project. The hope here is that it sparks an interest in the children about scientific concepts or STEM subjects in general and that this interest is carried forward to the university level.
These are intended to be a fun way to learn about the scientific process and research. If you as PhD student have the opportunity to become involved in an SIP, then definitely take it up! If you do, then approach the exercise with the aim of teaching the school children about the following 6 research concepts:
- Defining a Research Question. This could happen after a classroom lesson introducing the children to a new concept. Depending on their age, encourage them to spend time reading up about the subject independently (i.e. a first review of literature using Google searches). Guide them in coming up with a research question that they genuinely don’t know the answer to yet. Can they find out what a dependent variable is and an independent variable? Also help them understand what constitutes a controlled experiment. A popular investigatory project is one based around finding out if used cooking oil can be purified using a sedimentation method so that it can be recycled.
- Formulating a Null Hypothesis. Help the children understand the concept of the hypothesis and null hypothesis and refine the research question into this format. The null hypothesis for the above example could be ‘sedimentation is not able to purify used cooking oil’.
- Agreeing a Study Design. Come up with the scientific method needed to test the hypothesis and run the experiments to collect data.
- Collecting and Interpreting Results. Encourage the children to discuss the results they find and what they could mean. Using our example, can they see any differences between unused oil and oil that they tried to purify? Did the process work?
- Concluding the Study. Have them think about their results and what their original null hypothesis was. Do they think the null hypothesis is true – i.e. did they show that sedimentation was not able to purify used cooking oil?
- Presenting the Work. This should be a fun way to learn about the important skill of presenting your research. This might be in the form of a written page describing what they did and what they found and including a summary graph of results. Another good approach is to encourage them to give short presentations using photos of their experimental setup.
Conclusion
Getting involved in a science investigatory project can be a great outreach activity to promote STEM subjects and scientific research to children. Running a science experiment with them and teaching them to think about the scientific method used can be a lot of fun too. I definitely recommend trying it even just once during your time as a PhD student.